Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Phys Rev Lett ; 127(20): 202501, 2021 Nov 12.
Article En | MEDLINE | ID: mdl-34860042

Two long-standing puzzles in the decay of ^{185}Bi, the heaviest known proton-emitting nucleus are revisited. These are the nonobservation of the 9/2^{-} state, which is the ground state of all heavier odd-A Bi isotopes, and the hindered nature of proton and α decays of its presumed 60-µs 1/2^{+} ground state. The ^{185}Bi nucleus has now been studied with the ^{95}Mo(^{93}Nb,3n) reaction in complementary experiments using the Fragment Mass Analyzer and Argonne Gas-Filled Analyzer at Argonne National Laboratory's ATLAS facility. The experiments have established the existence of two states in ^{185}Bi; the short-lived T_{1/2}=2.8_{-1.0}^{+2.3} µs, proton- and α-decaying ground state, and a 58(2)-µs γ-decaying isomer, the half-life of which was previously attributed to the ground state. The reassignment of the ground-state lifetime results in a proton-decay spectroscopic factor close to unity and represents the only known example of a ground-state proton decay to a daughter nucleus (^{184}Pb) with a major shell closure. The data also demonstrate that the ordering of low- and high-spin states in ^{185}Bi is reversed relative to the heavier odd-A Bi isotopes, with the intruder-based 1/2^{+} configuration becoming the ground, similar to the lightest At nuclides.

2.
Phys Rev Lett ; 120(12): 122503, 2018 Mar 23.
Article En | MEDLINE | ID: mdl-29694087

A beam containing a substantial component of both the J^{π}=5^{+}, T_{1/2}=162 ns isomeric state of ^{18}F and its 1^{+}, 109.77-min ground state is utilized to study members of the ground-state rotational band in ^{19}F through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2^{+} band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

4.
Phys Rev Lett ; 115(13): 132502, 2015 Sep 25.
Article En | MEDLINE | ID: mdl-26451549

Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) µs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the ^{254}Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1) µs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.

5.
Phys Rev Lett ; 113(2): 022701, 2014 Jul 11.
Article En | MEDLINE | ID: mdl-25062170

Measurements of the excitation function for the fusion of (24)Mg+(30)Si (Q=17.89 MeV)have been extended toward lower energies with respect to previous experimental data. The S-factor maximum observed in this large, positive-Q-value system is the most pronounced among such systems studied thus far. The significance and the systematics of an S-factor maximum in systems with positive fusion Q values are discussed. This result would strongly impact the extrapolated cross sections and reaction rates in the carbon and oxygen burnings and, thus, the study of the history of stellar evolution.

6.
Phys Rev Lett ; 112(15): 152702, 2014 Apr 18.
Article En | MEDLINE | ID: mdl-24785034

We have studied the fission-neutron emission competition in highly excited (274)Hs (Z=108) (where the fission barrier is due to shell effects) formed by a hot fusion reaction. Matching cross bombardments ((26)Mg+(248)Cm and (25)Mg+(248)Cm) were used to identify the properties of first chance fission of (274)Hs. A Harding-Farley analysis of the fission neutrons emitted in the (25)Mg,26+(248)Cm was performed to identify the prescission and postscission components of the neutron multiplicities in each system. (Γn/Γt) for the first chance fission of (274)Hs (E*=63 MeV) is 0.89±0.13; i.e., ∼90% of the highly excited nuclei survive. The high value of that survival probability is due to dissipative effects during deexcitation. A proper description of the survival probabilities of excited superheavy nuclei formed in hot fusion reactions requires consideration of both dynamic and static (shell-related) effects.

7.
Phys Rev Lett ; 113(26): 262505, 2014 Dec 31.
Article En | MEDLINE | ID: mdl-25615317

We report on the first measurement of the fission barrier height in a heavy shell-stabilized nucleus. The fission barrier height of 254No is measured to be Bf=6.0±0.5 MeV at spin 15ℏ and, by extrapolation, Bf=6.6±0.9 MeV at spin 0ℏ. This information is deduced from the measured distribution of entry points in the excitation energy versus spin plane. The same measurement is performed for 220Th and only a lower limit of the fission barrier height can be determined: Bf(I)>8 MeV. Comparisons with theoretical fission barriers test theories that predict properties of superheavy elements.

8.
Phys Rev Lett ; 110(7): 072701, 2013 Feb 15.
Article En | MEDLINE | ID: mdl-25166370

Previous explanations for the resonance behavior of (12)C+(12)C fusion at low energies were based on a nonresonant compound-nucleus background and an additional contribution from a series of resonances. This separation into "resonance" and "background" contributions of the cross section is artificial. We propose to explain this phenomenon through the impact on the cross section of the relatively large spacings and the narrow widths of (24)Mg compound levels in the corresponding excitation-energy region.

9.
Phys Rev Lett ; 106(17): 172701, 2011 Apr 29.
Article En | MEDLINE | ID: mdl-21635032

The structure of (15)C, with an s(1/2) neutron weakly bound to a closed-neutron shell nucleus (14)C, makes it a prime candidate for a one-neutron halo nucleus. We have for the first time studied the cross section for the fusion-fission reaction (15)C+(232)Th at energies in the vicinity of the Coulomb barrier and compared it to the yield of the neighboring (14)C+(232)Th system measured in the same experiment. At sub-barrier energies, an enhancement of the fusion yield by factors of 2-5 was observed for (15)C, while the cross sections for (14)C match the trends measured for (12,13)C.

10.
Phys Rev Lett ; 104(13): 132501, 2010 Apr 02.
Article En | MEDLINE | ID: mdl-20481878

A first experiment is reported that makes use of a new kind of spectrometer uniquely suited to the study of reactions with radioactive beams in inverse kinematics, the helical orbit spectrometer, HELIOS. The properties of some low-lying states in the neutron-rich N=8 nucleus 13B were studied with good resolution. From the measured angular distributions of the (d,p) reaction and the relative spectroscopic factors, spin and configuration assignments of the first- and third-excited states of this nucleus can be constrained.

11.
Phys Rev Lett ; 104(14): 142301, 2010 Apr 09.
Article En | MEDLINE | ID: mdl-20481933

This Letter presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v(2) in Au+Au collisions at square root(s(NN))=200 GeV as a function of collision centrality. The relative nonstatistical fluctuations of the v(2) parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (nonflow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.

12.
Phys Rev Lett ; 104(6): 062301, 2010 Feb 12.
Article En | MEDLINE | ID: mdl-20366815

A measurement of two-particle correlations with a high transverse momentum trigger particle (p(T)(trig) > 2.5 GeV/c) is presented for Au+Au collisions at square root(s(NN)) = 200 GeV over the uniquely broad longitudinal acceptance of the PHOBOS detector (-4 < Delta eta < 2). A broadening of the away-side azimuthal correlation compared to elementary collisions is observed at all Delta eta. As in p+p collisions, the near side is characterized by a peak of correlated partners at small angle relative to the trigger particle. However, in central Au+Au collisions an additional correlation extended in Delta eta and known as the "ridge" is found to reach at least |Delta eta| approximately = 4. The ridge yield is largely independent of Delta eta over the measured range, and it decreases towards more peripheral collisions. For the chosen (p(T)(trig) cut, the ridge yield is consistent with zero for events with less than roughly 100 participating nucleons.

13.
Phys Rev Lett ; 105(13): 132501, 2010 Sep 24.
Article En | MEDLINE | ID: mdl-21230766

We have studied the ¹5C(d,p)¹6C reaction in inverse kinematics using the Helical Orbit Spectrometer at Argonne National Laboratory. Prior studies of electromagnetic-transition rates in ¹6C suggested an exotic decoupling of the valence neutrons from the core in that nucleus. Neutron-adding spectroscopic factors give a different probe of the wave functions of the relevant states in ¹6C. Shell-model calculations reproduce both the present transfer data and the previously measured transition rates, suggesting that ¹6C may be described without invoking very exotic phenomena.

14.
Phys Rev Lett ; 102(14): 142301, 2009 Apr 10.
Article En | MEDLINE | ID: mdl-19392428

We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, sqrt[s_{NN}]=22.4, 62.4, and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. A comparison of Cu+Cu and Au+Au results shows that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same N{part}/2A rather than the same N_{part}. In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies.

15.
Phys Rev Lett ; 98(24): 242302, 2007 Jun 15.
Article En | MEDLINE | ID: mdl-17677957

This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

16.
Phys Rev Lett ; 97(1): 012301, 2006 Jul 07.
Article En | MEDLINE | ID: mdl-16907368

We report on measurements of directed flow as a function of pseudorapidity in Au + Au collisions at energies of square root of SNN = 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

17.
Phys Rev Lett ; 96(21): 212301, 2006 Jun 02.
Article En | MEDLINE | ID: mdl-16803231

We present transverse momentum distributions of charged hadrons produced in Cu + Cu collisions at square root of SNN = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < pT < 5.0 GeV/c at square root of SNN = 62.4 GeV and 0.25 < pT < 7.0 GeV/c at square root of SNN = 200 GeV, in a pseudorapidity range of 0.2 < eta < 1.4. The nuclear modification factor R(AA) is calculated relative to p + p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross section, R(AA) is observed to be systematically larger in Cu + Cu collisions compared to Au + Au. However, for the same number of participating nucleons, R(AA) is essentially the same in both systems over the measured range of pT, in spite of the significantly different geometries of the Cu + Cu and Au + Au systems.

18.
Phys Rev Lett ; 94(12): 122303, 2005 Apr 01.
Article En | MEDLINE | ID: mdl-15903910

This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

20.
Phys Rev Lett ; 93(8): 082301, 2004 Aug 20.
Article En | MEDLINE | ID: mdl-15447175

The measured pseudorapidity distribution of primary charged particles in minimum-bias d+Au collisions at sqrt[s(NN)]=200 GeV is presented for the first time. This distribution falls off less rapidly in the gold direction as compared to the deuteron direction. The average value of the charged particle pseudorapidity density at midrapidity is |eta|< or =0.6)=9.4+/-0.7(syst) and the integrated primary charged particle multiplicity in the measured region is 82+/-6(syst). Estimates of the total charged particle production, based on extrapolations outside the measured pseudorapidity region, are also presented. The pseudorapidity distribution, normalized to the number of participants in d+Au collisions, is compared to those of Au+Au and p+(-)p systems at the same energy. The d+Au distribution is also compared to the predictions of the parton saturation model, as well as microscopic models.

...